Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(2): e0280208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36821588

RESUMO

Material of the antiarch placoderm Bothriolepis from the middle Givetian of the Valentia Slate Formation in Iveragh Peninsula, Ireland, is described and attributed to a new species, B. dairbhrensis sp. nov. A revision of the genus Bothriolepis is proposed, and its taxonomic content and previous phylogenetic analyses are reviewed, as well as the validity of morphologic characteristics considered important for the establishment of the genus, such as the shape of the preorbital recess of the neurocranium. A series of computerised phylogenetic analyses was performed, which reveals that our new species is the sister taxon to the Frasnian Scottish form B. gigantea. New phylogenetic and biogeographic analyses of the genus Bothriolepis together with comparisons between faunal assemblages reveal a first northward dispersal wave from Gondwana to Euramerica at the latest in the mid Givetian. Other Euramerican species of Bothriolepis seem to belong to later dispersal waves from Gondwana, non-excluding southward waves from Euramerica. Questions remain open such as the taxonomic validity and stratigraphic constraints for the most ancient forms of Bothriolepis in China, and around the highly speciose nature of the genus.


Assuntos
Evolução Biológica , Crânio , Animais , Filogenia , Irlanda , China
2.
Sci Rep ; 11(1): 19427, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635686

RESUMO

We present an updated time frame for the 30 m thick late Miocene sedimentary Trachilos section from the island of Crete that contains the potentially oldest hominin footprints. The section is characterized by normal magnetic polarity. New and published foraminifera biostratigraphy results suggest an age of the section within the Mediterranean biozone MMi13d, younger than ~ 6.4 Ma. Calcareous nannoplankton data from sediments exposed near Trachilos and belonging to the same sub-basin indicate deposition during calcareous nannofossil biozone CN9bB, between 6.023 and 6.727 Ma. By integrating the magneto- and biostratigraphic data we correlate the Trachilos section with normal polarity Chron C3An.1n, between 6.272 and 6.023 Ma. Using cyclostratigraphic data based on magnetic susceptibility, we constrain the Trachilos footprints age at ~ 6.05 Ma, roughly 0.35 Ma older than previously thought. Some uncertainty remains related to an inaccessible interval of ~ 8 m section and the possibility that the normal polarity might represent the slightly older Chron C3An.2n. Sediment accumulation rate and biostratigraphic arguments, however, stand against these points and favor a deposition during Chron C3An.1n.

3.
Curr Biol ; 31(15): 3374-3381.e5, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34197727

RESUMO

The Triassic was a crucial period for the early evolution and diversification of insects, including Coleoptera1-3-the most diverse order of organisms on Earth. The study of Triassic beetles, however, relies almost exclusively on flattened fossils with limited character preservation. Using synchrotron microtomography, we investigated a fragmentary Upper Triassic coprolite, which contains a rich record of 3D-preserved minute beetle remains of Triamyxa coprolithica gen. et sp. nov. Some specimens are nearly complete, preserving delicate structures of the legs and antennae. Most of them are congruent morphologically, implying that they are conspecific. Phylogenetic analyses suggest that T. coprolithica is a member of Myxophaga, a small suborder of beetles with a sparse fossil record, and that it represents the only member of the extinct family Triamyxidae fam. nov. Our findings highlight that coprolites can contain insect remains, which are almost as well preserved as in amber. They are thus an important source of information for exploring insect evolution before the Cretaceous-Neogene "amber time window." Treated as food residues, insect remains preserved in coprolites also have important implications for the paleoecology of insectivores, in this case, likely the dinosauriform Silesaurus opolensis.


Assuntos
Âmbar , Besouros , Fósseis , Animais , Besouros/genética , Filogenia
4.
Elife ; 102021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33648627

RESUMO

The production of blood cells (haematopoiesis) occurs in the limb bones of most tetrapods but is absent in the fin bones of ray-finned fish. When did long bones start producing blood cells? Recent hypotheses suggested that haematopoiesis migrated into long bones prior to the water-to-land transition and protected newly-produced blood cells from harsher environmental conditions. However, little fossil evidence to support these hypotheses has been provided so far. Observations of the humeral microarchitecture of stem-tetrapods, batrachians, and amniotes were performed using classical sectioning and three-dimensional synchrotron virtual histology. They show that Permian tetrapods seem to be among the first to exhibit a centralised marrow organisation, which allows haematopoiesis as in extant amniotes. Not only does our study demonstrate that long-bone haematopoiesis was probably not an exaptation to the water-to-land transition but it sheds light on the early evolution of limb-bone development and the sequence of bone-marrow functional acquisitions.


For many aquatic creatures, the red blood cells that rush through their bodies are created in organs such as the liver or the kidney. In most land vertebrates however, blood-cell production occurs in the bone marrow. There, the process is shielded from the ultraviolet light or starker temperature changes experienced out of the water. It is possible that this difference evolved long before the first animal with a backbone crawled out of the aquatic environment and faced new, harsher conditions: yet very little fossil evidence exists to support this idea. A definitive answer demands a close examination of fossils from the water-to-land transition including lobe-finned fish and early limbed vertebrates. To support the production of red blood cells, their fin and limb bones would have needed an internal cavity that can house a specific niche that opens onto a complex network of blood vessels. To investigate this question, Estefa et al. harnessed the powerful x-ray beam produced by the European Synchrotron Radiation Facility and imaged the fin and limb bones from fossil lobe-finned fish and early limbed vertebrates. The resulting three-dimensional structures revealed spongy long bones with closed internal cavities where the bone marrow cells were probably entrapped. These could not have housed the blood vessels needed to create an environment that produces red blood cells. In fact, the earliest four-legged land animals Estefa et al. found with an open marrow cavity lived 60 million years after vertebrates had first emerged from the aquatic environment, suggesting that blood cells only began to be created in bone marrow after the water-to-land transition. Future work could help to pinpoint exactly when the change in blood cell production occurred, helping researchers to identify the environmental and biological factors that drove this change.


Assuntos
Evolução Biológica , Medula Óssea/anatomia & histologia , Osso e Ossos/anatomia & histologia , Peixes/anatomia & histologia , Animais , Extremidades , Fósseis , Lâmina de Crescimento , Hematopoese , Síncrotrons
5.
Proc Natl Acad Sci U S A ; 117(43): 26861-26867, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33046636

RESUMO

Synapsids are unique in having developed multirooted teeth and complex occlusions. These innovations evolved in at least two lineages of mammaliamorphs (Tritylodontidae and Mammaliaformes). Triassic fossils demonstrate that close to the origins of mammals, mammaliaform precursors were "experimenting" with tooth structure and function, resulting in novel patterns of occlusion. One of the most surprising examples of such adaptations is present in the haramiyidan clade, which differed from contemporary mammaliaforms in having two rows of cusps on molariform crowns adapted to omnivorous/herbivorous feeding. However, the origin of the multicusped tooth pattern present in haramiyidans has remained enigmatic. Here we describe the earliest-known mandibular fossil of a mammaliaform with double molariform roots and a crown with two rows of cusps from the Late Triassic of Greenland. The crown morphology is intermediate between that of morganucodontans and haramiyidans and suggests the derivation of the multicusped molariforms of haramiyidans from the triconodont molar pattern seen in morganucodontids. Although it is remarkably well documented in the fossil record, the significance of tooth root division in mammaliaforms remains enigmatic. The results of our biomechanical analyses (finite element analysis [FEA]) indicate that teeth with two roots can better withstand stronger mechanical stresses like those resulting from tooth occlusion, than teeth with a single root.


Assuntos
Evolução Biológica , Dentição , Fósseis , Mamíferos , Animais , Groenlândia
6.
PeerJ ; 7: e7375, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31523493

RESUMO

Diets of pterosaurs have mainly been inferred from indirect evidence such as comparative anatomy, associations of co-occurring fossils, and functional morphology. Gut contents are rare, and until now there is only a single coprolite (fossil dropping), with unidentified inclusions, known. Here we describe three coprolites collected from a palaeosurface with numerous pterosaur tracks found in early Kimmeridgian (Hypselocyclum Zone) intertidal deposits of the Wierzbica Quarry, Poland. The specimens' morphology and association to the tracks suggest a pterosaur producer. Synchrotron scans reveal numerous small inclusions, with foraminifera making up the majority of the identifiable ones. Other small remains include shells/carapaces (of bivalves, ostracods, and other crustaceans/arthropods) and bristles (some possibly of polychaete worms). The high density of the small shelly inclusions suggest that they were not accidently ingested, but constituted an important food source for the pterosaur(s), perhaps together with unpreserved soft-bodied animals. The combined evidence from the tracks and coprolites suggest a filter-feeding ctenochasmatid as the most likely tracemaker. If true, this significantly expands the bromalite record for this pterosaur group, which was previously only known from gastroliths. Moreover, this study also provides the first direct evidence of filter feeding in Jurassic pterosaurs and shows that they had a similar diet to the recent Chilean flamingo (Phoenicopterus chilensis).

7.
R Soc Open Sci ; 6(3): 181042, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31031991

RESUMO

Diets of extinct animals can be difficult to analyse if no direct evidence, such as gut contents, is preserved in association with body fossils. Inclusions from coprolites (fossil faeces), however, may also reflect the diet of the host animal and become especially informative if the coprolite producer link can be established. Here we describe, based on propagation phase-contrast synchrotron microtomography (PPC-SRµCT), the contents of five morphologically similar coprolites collected from two fossil-bearing intervals from the highly fossiliferous Upper Triassic locality at Krasiejów in Silesia, Poland. Beetle remains, mostly elytra, and unidentified exoskeleton fragments of arthropods are the most conspicuous inclusions found in the coprolites. The abundance of these inclusions suggests that the coprolite producer deliberately targeted beetles and similar small terrestrial invertebrates as prey, but the relatively large size of the coprolites shows that it was not itself a small animal. The best candidate from the body fossil record of the locality is the dinosauriform Silesaurus opolensis Dzik, 2003, which had an anatomy in several ways similar to those of bird-like neotheropod dinosaurs and modern birds. We hypothesize that the beak-like jaws of S. opolensis were used to efficiently peck small insects off the ground, a feeding behaviour analogous to some extant birds.

8.
Sci Rep ; 9(1): 925, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700743

RESUMO

Here we present evidence for osteophagy in the Late Triassic archosaur Smok wawelski Niedzwiedzki, Sulej and Dzik, 2012, a large theropod-like predator from Poland. Ten medium to large-sized coprolites are matched, by their dimensions and by association with body fossils and footprints, to S. wawelski. The coprolites contain fragments of large serrated teeth as well as up to 50 percent by volume of bone fragments, with distinct fragmentation and angularity, from several prey taxa. This suggests pronounced osteophagy. Further evidence for bone-crushing behaviour is provided by isolated worn teeth, bone-rich regurgitalites (fossil regurgitates) and numerous examples of crushed or bite-marked dicynodont bones, all collected from the same bone-bearing beds in the Lipie Slaskie clay-pit. Several of the anatomical characters related to osteophagy, such as a massive head and robust body, seem to be shared by S. wawelski and the tyrannosaurids, despite their wide phylogenetic separation. These large predators thus provide evidence of convergence driven by similar feeding ecology at the beginning and end of the age of dinosaurs.


Assuntos
Evolução Biológica , Dinossauros , Comportamento Alimentar/fisiologia , Fósseis , Animais , Dinossauros/anatomia & histologia , Dinossauros/classificação , Dinossauros/fisiologia , Polônia
9.
Science ; 363(6422): 78-80, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30467179

RESUMO

Here, we describe the dicynodont Lisowicia bojani, from the Late Triassic of Poland, a gigantic synapsid with seemingly upright subcursorial limbs that reached an estimated length of more than 4.5 meters, height of 2.6 meters, and body mass of 9 tons. Lisowicia is the youngest undisputed dicynodont and the largest nondinosaurian terrestrial tetrapod from the Triassic. The lack of lines of arrested growth and the highly remodeled cortex of its limb bones suggest permanently rapid growth and recalls that of dinosaurs and mammals. The discovery of Lisowicia overturns the established picture of the Triassic megaherbivore radiation as a phenomenon restricted to dinosaurs and shows that stem-group mammals were capable of reaching body sizes that were not attained again in mammalian evolution until the latest Eocene.


Assuntos
Fósseis , Répteis/anatomia & histologia , Animais , Osso e Ossos/anatomia & histologia , Filogenia , Polônia
10.
Sci Rep ; 8(1): 1074, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348562

RESUMO

Opinions differ on whether the evolution of tetrapods (limbed vertebrates) from lobe-finned fishes was directly linked to terrestrialization. The earliest known tetrapod fossils, from the Middle Devonian (approximately 390 million years old) of Zachelmie Quarry in Poland, are trackways made by limbs with digits; they document a direct environmental association and thus have the potential to help answer this question. However, the tetrapod identity of the tracks has recently been challenged, despite their well-preserved morphology, on account of their great age and supposedly shallow marine (intertidal or lagoonal) depositional environment. Here we present a new palaeoenvironmental interpretation of the track-bearing interval from Zachelmie, showing that it represents a succession of ephemeral lakes with a restricted and non-marine biota, rather than a marginal marine environment as originally thought. This context suggests that the trackmaker was capable of terrestrial locomotion, consistent with the appendage morphology recorded by the footprints, and thus provides additional support for a tetrapod identification.


Assuntos
Evolução Biológica , Fósseis , Vertebrados , Animais , Paleontologia
11.
Sci Rep ; 7(1): 2723, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28578409

RESUMO

Coprolites (fossil faeces) reveal clues to ancient trophic relations, and contain inclusions representing organisms that are rarely preserved elsewhere. However, much information is lost by classical techniques of investigation, which cannot find and image the inclusions in an adequate manner. We demonstrate that propagation phase-contrast synchrotron microtomography (PPC-SRµCT) permits high-quality virtual 3D-reconstruction of coprolite inclusions, exemplified by two coprolites from the Upper Triassic locality Krasiejów, Poland; one of the coprolites contains delicate beetle remains, and the other one a partly articulated fish and fragments of bivalves.

12.
Nature ; 544(7651): 484-487, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28405026

RESUMO

The relationship between dinosaurs and other reptiles is well established, but the sequence of acquisition of dinosaurian features has been obscured by the scarcity of fossils with transitional morphologies. The closest extinct relatives of dinosaurs either have highly derived morphologies or are known from poorly preserved or incomplete material. Here we describe one of the stratigraphically lowest and phylogenetically earliest members of the avian stem lineage (Avemetatarsalia), Teleocrater rhadinus gen. et sp. nov., from the Middle Triassic epoch. The anatomy of T. rhadinus provides key information that unites several enigmatic taxa from across Pangaea into a previously unrecognized clade, Aphanosauria. This clade is the sister taxon of Ornithodira (pterosaurs and birds) and shortens the ghost lineage inferred at the base of Avemetatarsalia. We demonstrate that several anatomical features long thought to characterize Dinosauria and dinosauriforms evolved much earlier, soon after the bird-crocodylian split, and that the earliest avemetatarsalians retained the crocodylian-like ankle morphology and hindlimb proportions of stem archosaurs and early pseudosuchians. Early avemetatarsalians were substantially more species-rich, widely geographically distributed and morphologically diverse than previously recognized. Moreover, several early dinosauromorphs that were previously used as models to understand dinosaur origins may represent specialized forms rather than the ancestral avemetatarsalian morphology.


Assuntos
Aves/classificação , Dinossauros/anatomia & histologia , Dinossauros/classificação , Fósseis , Filogenia , Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/classificação , Animais , Aves/anatomia & histologia , Membro Posterior/anatomia & histologia , Esqueleto/anatomia & histologia , Tanzânia
13.
Naturwissenschaften ; 104(3-4): 26, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28283751

RESUMO

We describe the first known occurrence of a Devonian coelacanth specimen from the lower Famennian of the Holy Cross Mountains, Poland, with a conodont element preserved in its digestive tract. A small spiral and phosphatic coprolite (fossil excrement) containing numerous conodont elements and other unrecognized remains was also found in the same deposits. The coprolite is tentatively attributed to the coelacanth. Although it is unclear whether the Late Devonian coelacanth from Poland was an active predator or a scavenger, these finds provide the first direct evidence of feeding on conodont animals by early coelacanth fish, and one of the few evidences of feeding on these animals known to date. It also expands our knowledge about the diet and trophic relations between the Paleozoic marine animals in general.


Assuntos
Comportamento Alimentar , Peixes/fisiologia , Fósseis , Animais , Organismos Aquáticos , Dieta , Polônia
14.
Sci Rep ; 6: 36345, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27821855

RESUMO

The end-Permian mass extinction constituted the most devastating biotic crisis of the Phanerozoic. Its aftermath was characterized by harsh marine conditions incorporating volcanically induced oceanic warming, widespread anoxia and acidification. Bio-productivity accordingly experienced marked fluctuations. In particular, low palaeolatitude hard substrate communities from shallow seas fringing Western Pangaea and the Tethyan Realm were extremely impoverished, being dominated by monogeneric colonies of filter-feeding microconchid tubeworms. Here we present the first equivalent field data for Boreal hard substrate assemblages from the earliest Triassic (Induan) of East Greenland. This region bordered a discrete bio-realm situated at mid-high palaeolatitude (>30°N). Nevertheless, hard substrate biotas were compositionally identical to those from elsewhere, with microconchids encrusting Claraia bivalves and algal buildups on the sea floor. Biostratigraphical correlation further shows that Boreal microconchids underwent progressive tube modification and unique taxic diversification concordant with changing habitats over time. We interpret this as a post-extinction recovery and adaptive radiation sequence that mirrored coeval subequatorial faunas, and thus confirms hard substrate ecosystem depletion as a hallmark of the earliest Triassic interval globally.

15.
Proc Biol Sci ; 278(1708): 1107-13, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20926435

RESUMO

The ascent of dinosaurs in the Triassic is an exemplary evolutionary radiation, but the earliest phase of dinosaur history remains poorly understood. Body fossils of close dinosaur relatives are rare, but indicate that the dinosaur stem lineage (Dinosauromorpha) originated by the latest Anisian (ca 242-244 Ma). Here, we report footprints from the Early-Middle Triassic of Poland, stratigraphically well constrained and identified using a conservative synapomorphy-based approach, which shifts the origin of the dinosaur stem lineage back to the Early Olenekian (ca 249-251 Ma), approximately 5-9 Myr earlier than indicated by body fossils, earlier than demonstrated by previous footprint records, and just a few million years after the Permian/Triassic mass extinction (252.3 Ma). Dinosauromorph tracks are rare in all Polish assemblages, suggesting that these animals were minor faunal components. The oldest tracks are quadrupedal, a morphology uncommon among the earliest dinosauromorph body fossils, but bipedality and moderately large body size had arisen by the Early Anisian (ca 246 Ma). Integrating trace fossils and body fossils demonstrates that the rise of dinosaurs was a drawn-out affair, perhaps initiated during recovery from the Permo-Triassic extinction.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Dinossauros/classificação , Pé/anatomia & histologia , Animais , Biodiversidade , Dinossauros/genética , Extinção Biológica , Fósseis , Filogenia , Polônia
16.
Nature ; 463(7277): 43-8, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-20054388

RESUMO

The fossil record of the earliest tetrapods (vertebrates with limbs rather than paired fins) consists of body fossils and trackways. The earliest body fossils of tetrapods date to the Late Devonian period (late Frasnian stage) and are preceded by transitional elpistostegids such as Panderichthys and Tiktaalik that still have paired fins. Claims of tetrapod trackways predating these body fossils have remained controversial with regard to both age and the identity of the track makers. Here we present well-preserved and securely dated tetrapod tracks from Polish marine tidal flat sediments of early Middle Devonian (Eifelian stage) age that are approximately 18 million years older than the earliest tetrapod body fossils and 10 million years earlier than the oldest elpistostegids. They force a radical reassessment of the timing, ecology and environmental setting of the fish-tetrapod transition, as well as the completeness of the body fossil record.


Assuntos
Cordados/fisiologia , Fósseis , Marcha/fisiologia , Animais , Cordados/anatomia & histologia , Extremidades/anatomia & histologia , Extremidades/fisiologia , Peixes/anatomia & histologia , Peixes/fisiologia , História Antiga , Modelos Biológicos , Filogenia , Polônia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA